Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1.

نویسندگان

  • Li-Chieh Ching
  • Yu Ru Kou
  • Song-Kun Shyue
  • Kuo-Hui Su
  • Jeng Wei
  • Li-Ching Cheng
  • Yuan-Bin Yu
  • Ching-Chian Pan
  • Tzong-Shyuan Lee
چکیده

AIMS We investigated the molecular mechanism underlying the role of transient receptor potential vanilloid type 1 (TRPV1), a Ca(2+)-permeable non-selective cation channel, in the activation of endothelial nitric oxide (NO) synthase (eNOS) in endothelial cells (ECs) and mice. METHODS AND RESULTS In ECs, TRPV1 ligands (evodiamine or capsaicin) promoted NO production, eNOS phosphorylation, and the formation of a TRPV1-eNOS complex, which were all abrogated by the TRPV1 antagonist capsazepine. TRPV1 ligands promoted the phosphorylation of Akt, calmodulin-dependent protein kinase II (CaMKII) and TRPV1, and increased the formation of a TRPV1-Akt-CaMKII complex. Removal of extracellular Ca(2+) abolished the ligand-induced increase in the phosphorylation of Akt and CaMKII, formation of a TRPV1-eNOS complex, and eNOS activation. Inhibition of PI3K and CaMKII suppressed the ligand-induced increase in TRPV1 phosphorylation, formation of a TRPV1-eNOS complex, and eNOS activation. TRPV1 activation increased the phosphorylation of Akt, CaMKII, and eNOS in the aortas of wild-type mice but failed to activate eNOS in TRPV1-deficient aortas. Additionally, TRPV1 ligand-induced angiogenesis was diminished in eNOS- or TRPV1-deficient mice. When compared with apolipoprotein E (ApoE)-deficient mice, ApoE/TRPV1-double-knockout mice displayed reduced phosphorylation of eNOS, Akt, and CaMKII in aortas but worsened atherosclerotic lesions. CONCLUSION TRPV1 activation in ECs may trigger Ca(2+)-dependent PI3K/Akt/CaMKII signalling, which leads to enhanced phosphorylation of TRPV1, increased TRPV1-eNOS complex formation, eNOS activation and, ultimately, NO production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implication of Transient Receptor Potential Vanilloid Type 1 in 14,15-Epoxyeicosatrienoic Acid-induced Angiogenesis

14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca(2+) influx, nitric oxide (NO)...

متن کامل

Nitric Oxide–Dependent Feedback Loop Regulates Transient Receptor Potential Vanilloid 4 (TRPV4) Channel Cooperativity and Endothelial Function in Small Pulmonary Arteries

BACKGROUND Recent studies demonstrate that spatially restricted, local Ca2+ signals are key regulators of endothelium-dependent vasodilation in systemic circulation. There are drastic functional differences between pulmonary arteries (PAs) and systemic arteries, but the local Ca2+ signals that control endothelium-dependent vasodilation of PAs are not known. Localized, unitary Ca2+ influx events...

متن کامل

PKCα mediates acetylcholine-induced activation of TRPV4-dependent calcium influx in endothelial cells.

Transient receptor potential vanilloid channel 4 (TRPV4) is a polymodally activated nonselective cationic channel implicated in the regulation of vasodilation and hypertension. We and others have recently shown that cyclic stretch and shear stress activate TRPV4-mediated calcium influx in endothelial cells (EC). In addition to the mechanical forces, acetylcholine (ACh) was shown to activate TRP...

متن کامل

Low-Cytotoxic Synthetic Bromorutaecarpine Exhibits Anti-Inflammation and Activation of Transient Receptor Potential Vanilloid Type 1 Activities

Rutaecarpine (RUT), the major bioactive ingredient isolated from the Chinese herb Evodia rutaecarpa, possesses a wide spectrum of biological activities, including anti-inflammation and preventing cardiovascular diseases. However, its high cytotoxicity hampers pharmaceutical development. We designed and synthesized a derivative of RUT, bromo-dimethoxyrutaecarpine (Br-RUT), which showed no cytoto...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 91 3  شماره 

صفحات  -

تاریخ انتشار 2011